BACKGROUND: Given the challenges of collecting reliable Psychomotor Vigilance Task (PVT) data in the field, this study compared a 3-min PVT on a hand-held device and wrist-worn device vs. a standardized laptop.METHODS: The experiment utilized a randomized, repeated-measures
design. Subjects (N = 36) performed the PVT on a touch-screen, hand-held device (HHD), a wrist-worn device (WWD), and a standardized laptop (L). Sleep was assessed using wrist-worn actigraphy.RESULTS: Compared to the L, the HHD was slower on average (∼50% longer reaction
times; ∼34% slower response speeds; ∼600% more lapses in attention combined with false starts) and introduced a proportional bias that decreased the range of response speeds by 60%. Compared to the L, the WWD with the backlight on was faster on average (reaction time: ∼6%; response
speed: ∼13%), but equivalent in lapses combined with false starts, and introduced a proportional bias that increased the range of responses by 60%.DISCUSSION: Compared to the L PVT, using a hand-held, touch screen interface to collect PVT data may introduce a large constant
bias and a proportional bias that decreases the range of response speed. However, performance on the WWD closely mirrors performance on the L PVT and the proportional bias tends to be in favor of detecting individuals with slower responses. Researchers should avoid comparing PVT metrics between
different device types. Reliability of PVT data from a WWD or HHD may be degraded when used in an operational setting with unpredictable environmental movement (such as a surface maritime setting).Matsangas P, Shattuck NL. Hand-held and wrist-worn field-based PVT devices vs. the
standardized laptop PVT. Aerosp Med Hum Perform. 2020; 91(5):409–415.