INTRODUCTION: The frequency of long-duration, high-altitude missions with fighter aircraft is increasing, which may increase the incidence of decompression sickness (DCS). The aim of the present study was to compare decompression stress during simulated sustained high-altitude
flying vs. high-altitude flying interrupted by periods of moderate or marked cabin pressure increase.METHODS: The level of venous gas emboli (VGE) was assessed from cardiac ultrasound images using the 5-degree Eftedal-Brubakk scale. Nitrogen washout/uptake was measured using a closed-circuit
rebreather. Eight men were investigated in three conditions: one 80-min continuous exposure to a simulated cabin altitude of A) 24,000 ft, or four 20-min exposures to 24,000 ft interspersed by three 20-min intervals at B) 20,000 ft or C) 900 ft.RESULTS: A and B induced marked and
persistent VGE, with peak bubble scores of [median (range)]: A: 2.5 (1–3); B: 3.5 (2–4). Peak VGE score was less in C [1.0 (1–2), P < 0.01]. Condition A exhibited an initially high and exponentially decaying rate of nitrogen washout. In C the washout rate was similar
in each period at 24,000 ft, and the nitrogen uptake rate was similar during each 900-ft exposure. B exhibited nitrogen washout during each period at 24,000 ft and the initial period at 20,000 ft, but on average no washout or uptake during the last period at 20,000 ft.DISCUSSION:
Intermittent reductions of cabin altitude from 24,000 to 20,000 ft do not appear to alleviate the DCS risk, presumably because the pressure increase is not sufficient to eliminate VGE. The nitrogen washout/uptake rate did not reflect DCS risk in the present exposures.Ånell R,
Grönkvist M, Eiken O, Gennser M. Nitrogen washout and venous gas emboli during sustained vs. discontinuous high-altitude exposures. Aerosp Med Hum Perform. 2019; 90(6):524–530.