Skip to main content
Sign inSign up
Logo
SubscribeAdvertising

Article Contents

Save
Download PDF

BACKGROUND: Mild hypercapnia combined with a cephalad fluid shift [e.g., that occurring during spaceflight or laparoscopic surgery with head-down tilt (HDT)] might affect cerebral autoregulation. However, no reports have described the effects of the combination on dynamic cerebral autoregulation. Therefore, we tested the hypothesis that the combination of mild hypercapnia and a cephalad fluid shift would attenuate dynamic cerebral autoregulation.METHODS: There were 15 healthy male volunteers who were exposed to 4 10-min protocols in which they received air in the supine position (Placebo/Supine), 3% carbon dioxide (CO2) in the supine position (CO2/Supine), air with −10° HDT (Placebo/HDT) and 3% CO2 with −10° HDT (CO2/HDT). Dynamic cerebral autoregulation was evaluated using a transfer function analysis of the beat-to-beat variability in mean arterial blood pressure (ABP) and mean cerebral blood flow (CBF) velocity.RESULTS: The phase in the low-frequency range was significantly lower during CO2/HDT than all other protocols, where CO2/HDT was −25% lower than Placebo/Supine (CO2/HDT, 0.49 ± 0.21; Placebo/Supine, 0.65 ± 0.16 radians). The transfer function gain in the low-frequency range was significantly higher during CO2/HDT than all other protocols, where CO2/HDT was 26% higher than Placebo/Supine (CO2/HDT, 1.08 ± 0.34; Placebo/Supine, 0.86 ± 0.28 cm · s−1 · mmHg−1). However, neither the CO2/Supine nor Placebo/HDT showed significant differences compared with the Placebo/Supine.DISCUSSION: Even short-term exposure to 3% CO2 plus HDT increased synchrony and the magnitude of transmission between ABP and CBF in the low-frequency range. Thus, the combination of mild hypercapnia and a cephalad fluid shift attenuated dynamic cerebral autoregulation.Kurazumi T, Ogawa Y, Yanagida R, Morisaki H, Iwasaki K. Dynamic cerebral autoregulation during the combination of mild hypercapnia and cephalad fluid shift. Aerosp Med Hum Perform. 2017; 88(9):819–826.

Keywords: carbon dioxide; cerebral circulation; head-down tilt; transcranial Doppler; transfer function analysis
  • Download PDF
Citations

Get Email Alerts

Article Contents
ASMA Logo
SubscribeAuthors InstructionsReviewer InstructionsSubmission Information
Powered by PubFactory