Save
Download PDF

BACKGROUND: One disorienting movement pattern, common during flight, is the entering of a coordinated turn. While the otoliths persistently sense upright head position, the change in roll attitude constitutes a semicircular canal stimulus. This sensory conflict also arises during acceleration in a swing-out gondola centrifuge. From a vestibular viewpoint there are, however, certain differences between the two stimulus situations; the aim of the present study was to elucidate whether these differences are reflected in the perceived roll attitude.METHODS: Eight nonpilots were tested in a centrifuge (four runs) and during flight (two turns). The subjective visual horizontal (SVH) was measured using an adjustable luminous line in darkness. The centrifuge was accelerated from stationary to 1.56 G (roll 50°) within 7 s; the duration of the G plateau was 5 min. With the aircraft, turns with approximately 1.4 G (45°) were entered within 15 s and lasted for 5 min. Tilt perception (TP) was defined as the ratio of SVH/real roll tilt; initial and final values were calculated for each centrifugation/turn.RESULTS: In both systems there was a sensation of tilt that declined with time. The initial TP was (mean ± SD): 0.40 ± 0.27 (centrifuge) and 0.37 ± 0.30 (flight). The final TP was 0.20 ± 0.26 and 0.17 ± 0.19, respectively. Both initial and final TP correlated between the two conditions.CONCLUSION: The physical roll tilt is under-estimated to a similar degree in the centrifuge and aircraft. Also the correspondence at the individual level suggests that the vestibular dilemma of coordinated flight can be recreated in a lifelike manner using a gondola centrifuge.Tribukait A, Ström A, Bergsten E, Eiken O. Vestibular stimulus and perceived roll tilt during coordinated turns in aircraft and gondola centrifuge. Aerosp Med Hum Perform. 2016; 87(5):454–463.

Keywords: sense of balance; spatial orientation; spatial disorientation; vestibular psychophysics
  • Download PDF