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Co m m e n ta r y 	

Carbon Dioxide as a Multisystem Threat in Long 
Duration Spaceflight
Lorna A. Evans

	 BACKGROUND:	E levated partial pressure of carbon dioxide (Pco2) poses a persistent health challenge during spaceflight. Unlike Earth’s 
environment, the International Space Station experiences Pco2 levels that often exceed terrestrial safety thresholds, 
creating unique physiological risks for astronauts. In microgravity, localized Pco2 “pockets” can form due to lack of 
convection, exacerbating hypercapnic symptoms such as headaches, visual disturbances, and cognitive impairments. 
Moreover, microgravity-induced cephalad fluid shifts amplify the impact of CO2-mediated cerebral vasodilation, 
contributing to elevated intracranial pressure and potentially exacerbating spaceflight-associated neuro-ocular 
syndrome. Chronic hypercapnia also raises concerns about bone demineralization and renal stone formation, 
compounding mission risks. As we move toward longer missions to the Moon and Mars, mitigating CO2-related health 
effects through engineering controls, physiological countermeasures, and enhanced monitoring is essential. This article 
discusses current evidence and calls for integrated strategies to safeguard astronaut health and mission success under 
the compounded stressors of CO2 exposure and microgravity.
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 Spaceflight continues to stretch the boundaries of human 
physiology, exposing astronauts to stressors that test the 
limits of human health and performance. Among these, 

elevated partial pressure of carbon dioxide (Pco﻿2 ) levels within 
spacecraft habitats, particularly the International Space Station, 
remain a persistent and underappreciated health concern.

 On Earth, atmospheric Pco﻿2  averages around 0.3 mmHg, 
whereas aboard the International Space Station, concentrations 
typically range from 2.3–5.3 mmHg, with the highest recorded 
peak reaching 14.9 mmHg. 1﻿,﻿ 2  NASA currently sets a 1-h aver-
age permissible Pco﻿2  at 3 mmHg; however, astronauts often 
experience symptoms at levels lower than those known to cause 
effects under terrestrial conditions.2,3

 Physiological Mechanisms of CO2  Response
 CO2  is a potent respiratory stimulant and cerebral vasodilator. 
As it diffuses rapidly across the blood-brain barrier, CO2 acidi-
fies the cerebrospinal fluid by forming carbonic acid, which 
dissociates into bicarbonate and hydrogen ions.4 This decrease 
in cerebrospinal fluid pH activates central chemoreceptors on 
the ventrolateral medulla, prompting increased ventilation.4 

Peripheral chemoreceptors in the carotid and aortic bodies 
respond even more rapidly to increased arterial partial pressure 
of CO2  and acidosis, initiating afferent signals that drive respi-
ratory compensation. 4﻿

 However, this adaptive response has downstream effects. 
The acidosis induced by CO2  promotes vasodilation via mech-
anisms involving nitric oxide, second messenger pathways, and 
ion channel modulation leading to increased cerebral blood 
flow, which in the closed environment of the cranium can ele-
vate intracranial pressure. 2  Terrestrial studies suggest that every 
1-mmHg increase in arterial Pco﻿2  can raise intracranial pres-
sure by 1–3 mmHg, pushing levels toward thresholds associ-
ated with neurological compromise. 5  In microgravity, cephalad 
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fluid shifts caused by the absence of gravity further exacerbate 
this issue by redistributing blood volume to the upper body 
and brain.  

 Health Effects of Hypercapnia in Space
 Fluid redistribution combined with CO2 -mediated vasodilation 
may exacerbate spaceflight-associated neuro-ocular syndrome, 
characterized by optic disc edema, globe flattening, and visual 
disturbances. 6  Law et al. reported that each 1-mmHg increase 
in Pco﻿2  doubles the risk of headache and recommended main-
taining 7-d average levels below 2.5 mmHg. 2﻿

 Astronauts’ subjective reports align with these findings, 
linking Pco﻿2  levels between 2.8–5.0 mmHg to symptoms such 
as headaches, fatigue, blurred vision, poor sleep, and nausea, 
with symptom severity increasing alongside Pco﻿2  concentra-
tion. 2﻿,﻿ 7  At Pco﻿2  concentrations around 3.5 mmHg, astronauts 
experienced frontal headaches and chronic cough. 7  A recent 
study conducted by Cole et al. found a significant link between 
Pco﻿2  levels and congestion, with congestion incidence dou-
bling for every 1-mmHg increase in Pco﻿2 . 8﻿

 The relationship between increased bone resorption when 
compared to bone formation and the lack of mechanical load-
ing is well-established, as the absence of weight-bearing activi-
ties accelerates bone density loss in microgravity. Hypercapnia 
may exacerbate this by disrupting calcium balance, further pro-
moting bone resorption and increasing renal stone risk. 9  This 
concern is further supported by new evidence of CO2 -associated 
calciuria and reduced bone density. 9  Although potassium or 
magnesium citrate could potentially be used to mitigate renal 
calculus formation, data on its efficacy in the specific setting of 
space-based hypercapnia are limited. 10  This topic continues to 
be an area of ongoing research, and additional studies are 
required to reach definitive conclusions.  

 Operational Implications and Cognitive Impact
 Astronauts have reported malaise, sleep disruption, and cog-
nitive sluggishness at Pco﻿2  levels as low as 2.8 mmHg. 2﻿,﻿ 7  Per-
formance decrements at these thresholds raise concerns for 
high-demand tasks, especially during extravehicular activity 
or emergency response. Furthermore, CO2  hotspots, micro-
environments with elevated local concentrations due to inad-
equate air mixing, are particularly worrisome in exercise areas,  
sleep stations, or confined work zones. 11﻿

 In microgravity, the lack of convection means that exhaled 
CO2  can linger near the astronaut’s face, further increasing the 
inhaled Pco﻿2 . 12  Interestingly, some reports suggest that the 
heightened sensitivity to CO2  observed during spaceflight 
may not only be due to the exposure itself, but also to individ-
ual predispositions to CO2  retention, adaptation to micro-
gravity, and fluctuations in local CO2  levels that are not 
detected by fixed sensors. 7  This adds another layer of com-
plexity when assessing astronaut health, as individual factors 
such as metabolic rate, hydration status, and adaptation to 
space can influence the body’s response to environmental CO2 .  

 Mitigation Strategies
 Mitigating CO2  exposure requires integrated solutions across 
hardware, environmental monitoring, and individualized crew 
countermeasures. Engineering should prioritize improved air 
mixing via fans, redesigned ducts, and adaptive airflow technol-
ogies. Optimizing corridors and storage areas can reduce 
obstructions from clutter and equipment. Retractable racks 
may improve accessibility and airflow and help avoid dust 
accumulation.

 Real-time CO2  sensors with high spatial resolution are criti-
cal for detecting localized hotspots and tracking trends. This 
enables timely activation of scrubbers or ventilation before 
harmful levels are reached. Personalized ventilation or localized 
scrubbers can further protect vulnerable areas such as sleeping 
quarters, exercise zones, and dining spaces.

 Artificial intelligence can enhance CO2  management by 
analyzing continuous sensor data to detect trends and pre-
dict spikes, prompting timely life support adjustments. 
Integrating artificial intelligence into the Environmental 
Control and Life Support System can dynamically optimize 
strategies based on astronaut profiles such as metabolic rate, 
activity level, or CO2  sensitivity and evolving environmental 
conditions, especially during long duration missions where 
resupply is not feasible.

 Individualized CO2  susceptibility profiles, based on  
ventilatory thresholds, genetic markers, or neurovascular 
imaging, may help identify vulnerable crewmembers. Phar
macological agents that modulate cerebral blood flow or 
promote renal calcium excretion may play a future role, 
although their safety and efficacy require rigorous space- 
specific validation.

 Mission planning should incorporate CO2  risk modeling. 
Factoring CO2  effects into neurocognitive performance algo-
rithms and integrated workload tools will be essential for pre-
serving astronaut functionality, mental health, and operational 
capacity. Additionally, special consideration should be given to 
CO2  exposure during extravehicular activity due to unique 
environmental challenges.  

 Conclusions
 As space agencies move toward long-duration missions to the 
Moon and Mars, CO2  should be addressed not as a passive 
variable, but as an active contributor to physiological strain. A 
comprehensive approach that integrates adaptive engineering, 
predictive physiology, and real-time environmental monitor-
ing will be essential to ensure astronauts not only survive, but 
thrive as humanity explores deeper into space.      
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