Carbon Dioxide as a Multisystem Threat in Long Duration Spaceflight

Lorna A. Evans

BACKGROUND

Elevated partial pressure of carbon dioxide (Pco_2) poses a persistent health challenge during spaceflight. Unlike Earth's environment, the International Space Station experiences Pco_2 levels that often exceed terrestrial safety thresholds, creating unique physiological risks for astronauts. In microgravity, localized Pco_2 "pockets" can form due to lack of convection, exacerbating hypercapnic symptoms such as headaches, visual disturbances, and cognitive impairments. Moreover, microgravity-induced cephalad fluid shifts amplify the impact of CO_2 -mediated cerebral vasodilation, contributing to elevated intracranial pressure and potentially exacerbating spaceflight-associated neuro-ocular syndrome. Chronic hypercapnia also raises concerns about bone demineralization and renal stone formation, compounding mission risks. As we move toward longer missions to the Moon and Mars, mitigating CO_2 -related health effects through engineering controls, physiological countermeasures, and enhanced monitoring is essential. This article discusses current evidence and calls for integrated strategies to safeguard astronaut health and mission success under the compounded stressors of CO_2 exposure and microgravity.

KEYWORDS:

carbon dioxide, microgravity, spaceflight, hypercapnia, astronaut health, long-duration missions, space exploration, International Space Station.

Evans LA. Carbon dioxide as a multisystem threat in long duration spaceflight. Aerosp Med Hum Perform. 2025; 96(11):1024–1026.

paceflight continues to stretch the boundaries of human physiology, exposing astronauts to stressors that test the limits of human health and performance. Among these, elevated partial pressure of carbon dioxide (Pco₂) levels within spacecraft habitats, particularly the International Space Station, remain a persistent and underappreciated health concern.

On Earth, atmospheric PcO_2 averages around 0.3 mmHg, whereas aboard the International Space Station, concentrations typically range from 2.3–5.3 mmHg, with the highest recorded peak reaching 14.9 mmHg.^{1,2} NASA currently sets a 1-h average permissible PcO_2 at 3 mmHg; however, astronauts often experience symptoms at levels lower than those known to cause effects under terrestrial conditions.^{2,3}

Physiological Mechanisms of CO₂ Response

CO₂ is a potent respiratory stimulant and cerebral vasodilator. As it diffuses rapidly across the blood-brain barrier, CO₂ acidifies the cerebrospinal fluid by forming carbonic acid, which dissociates into bicarbonate and hydrogen ions.⁴ This decrease in cerebrospinal fluid pH activates central chemoreceptors on the ventrolateral medulla, prompting increased ventilation.⁴

Peripheral chemoreceptors in the carotid and aortic bodies respond even more rapidly to increased arterial partial pressure of ${\rm CO_2}$ and acidosis, initiating afferent signals that drive respiratory compensation.⁴

However, this adaptive response has downstream effects. The acidosis induced by CO₂ promotes vasodilation via mechanisms involving nitric oxide, second messenger pathways, and ion channel modulation leading to increased cerebral blood flow, which in the closed environment of the cranium can elevate intracranial pressure.² Terrestrial studies suggest that every 1-mmHg increase in arterial PcO₂ can raise intracranial pressure by 1–3 mmHg, pushing levels toward thresholds associated with neurological compromise.⁵ In microgravity, cephalad

From Mayo Clinic Florida, Jacksonville, FL, United States.

This manuscript was received for review in May 2025. It was accepted for publication in August 2025.

Address correspondence to: Lorna A. Evans, M.D., Dermatology Department, Mayo Clinic Florida, 4500 San Pablo Rd S, Jacksonville, FL 32224, United States; evans.lorna@mayo.edu.

Reprint and copyright @ by the Aerospace Medical Association, North Palm Beach, FL. DOI: https://doi.org/10.3357/AMHP.6716.2025

fluid shifts caused by the absence of gravity further exacerbate this issue by redistributing blood volume to the upper body and brain.

Health Effects of Hypercapnia in Space

Fluid redistribution combined with $\rm CO_2$ -mediated vasodilation may exacerbate spaceflight-associated neuro-ocular syndrome, characterized by optic disc edema, globe flattening, and visual disturbances. Law et al. reported that each 1-mmHg increase in $\rm PcO_2$ doubles the risk of headache and recommended maintaining 7-d average levels below 2.5 mmHg.

Astronauts' subjective reports align with these findings, linking PCO₂ levels between 2.8–5.0 mmHg to symptoms such as headaches, fatigue, blurred vision, poor sleep, and nausea, with symptom severity increasing alongside PCO₂ concentration.^{2,7} At PCO₂ concentrations around 3.5 mmHg, astronauts experienced frontal headaches and chronic cough.⁷ A recent study conducted by Cole et al. found a significant link between PCO₂ levels and congestion, with congestion incidence doubling for every 1-mmHg increase in PCO₂.⁸

The relationship between increased bone resorption when compared to bone formation and the lack of mechanical loading is well-established, as the absence of weight-bearing activities accelerates bone density loss in microgravity. Hypercapnia may exacerbate this by disrupting calcium balance, further promoting bone resorption and increasing renal stone risk. This concern is further supported by new evidence of CO₂-associated calciuria and reduced bone density. Although potassium or magnesium citrate could potentially be used to mitigate renal calculus formation, data on its efficacy in the specific setting of space-based hypercapnia are limited. This topic continues to be an area of ongoing research, and additional studies are required to reach definitive conclusions.

Operational Implications and Cognitive Impact

Astronauts have reported malaise, sleep disruption, and cognitive sluggishness at Pco_2 levels as low as 2.8 mmHg. ^{2,7} Performance decrements at these thresholds raise concerns for high-demand tasks, especially during extravehicular activity or emergency response. Furthermore, CO_2 hotspots, microenvironments with elevated local concentrations due to inadequate air mixing, are particularly worrisome in exercise areas, sleep stations, or confined work zones. ¹¹

In microgravity, the lack of convection means that exhaled CO_2 can linger near the astronaut's face, further increasing the inhaled Pco_2 . ¹² Interestingly, some reports suggest that the heightened sensitivity to CO_2 observed during spaceflight may not only be due to the exposure itself, but also to individual predispositions to CO_2 retention, adaptation to microgravity, and fluctuations in local CO_2 levels that are not detected by fixed sensors. ⁷ This adds another layer of complexity when assessing astronaut health, as individual factors such as metabolic rate, hydration status, and adaptation to space can influence the body's response to environmental CO_2 .

Mitigation Strategies

Mitigating CO_2 exposure requires integrated solutions across hardware, environmental monitoring, and individualized crew countermeasures. Engineering should prioritize improved air mixing via fans, redesigned ducts, and adaptive airflow technologies. Optimizing corridors and storage areas can reduce obstructions from clutter and equipment. Retractable racks may improve accessibility and airflow and help avoid dust accumulation.

Real-time CO_2 sensors with high spatial resolution are critical for detecting localized hotspots and tracking trends. This enables timely activation of scrubbers or ventilation before harmful levels are reached. Personalized ventilation or localized scrubbers can further protect vulnerable areas such as sleeping quarters, exercise zones, and dining spaces.

Artificial intelligence can enhance CO₂ management by analyzing continuous sensor data to detect trends and predict spikes, prompting timely life support adjustments. Integrating artificial intelligence into the Environmental Control and Life Support System can dynamically optimize strategies based on astronaut profiles such as metabolic rate, activity level, or CO₂ sensitivity and evolving environmental conditions, especially during long duration missions where resupply is not feasible.

Individualized CO_2 susceptibility profiles, based on ventilatory thresholds, genetic markers, or neurovascular imaging, may help identify vulnerable crewmembers. Pharmacological agents that modulate cerebral blood flow or promote renal calcium excretion may play a future role, although their safety and efficacy require rigorous space-specific validation.

Mission planning should incorporate CO_2 risk modeling. Factoring CO_2 effects into neurocognitive performance algorithms and integrated workload tools will be essential for preserving astronaut functionality, mental health, and operational capacity. Additionally, special consideration should be given to CO_2 exposure during extravehicular activity due to unique environmental challenges.

Conclusions

As space agencies move toward long-duration missions to the Moon and Mars, CO_2 should be addressed not as a passive variable, but as an active contributor to physiological strain. A comprehensive approach that integrates adaptive engineering, predictive physiology, and real-time environmental monitoring will be essential to ensure astronauts not only survive, but thrive as humanity explores deeper into space.

ACKNOWLEDGMENTS

Financial Disclosure Statement: The author has no competing interests to declare.

Author and Affiliation: Lorna A. Evans, M.D., Department of Dermatology, Mayo Clinic, Jacksonville, FL, United States.

REFERENCES

- Lindsey R. Climate change: atmospheric carbon dioxide. 2025. [Accessed 2025 May 31]. Available from https://www.climate.gov/news-features/understanding-climate/climate-change-atmospheric-carbon-dioxide.
- Law J, Van Baalen M, Foy M, Mason SS, Mendez C, et al. Relationship between carbon dioxide levels and reported headaches on the International Space Station. J Occup Environ Med. 2014 May; 56(5):477–83. Erratum in: J Occup Environ Med. 2014 Sep; 56(9): e82.
- National Aeronautics and Space Administration. NASA spaceflight human system standard volume 2: human factors, habitability, and environmental health. Washington (DC): National Aeronautics and Space Administration; updated 2025 Feb 15. Report No.: NASA-STD-3001-Vol-2. [Accessed 2025 May 4]. Available from https://www.nasa.gov/reference/ nasa-std-3001v2/.
- Benner A, Lewallen NF, Sharma S. Physiology, carbon dioxide response curve. In: StatPearls. Treasure Island (FL): StatPearls Publishing; updated 2023 Jul 17. [Accessed 2025 May 4]. Available from http://www.ncbi.nlm. nih.gov/books/NBK538146/.
- Paul RL, Polanco O, Turney SZ, McAslan TC, Cowley RA. Intracranial pressure responses to alterations in arterial carbon dioxide pressure in patients with head injuries. J Neurosurg. 1972 Jun; 36(6):714–20.
- Lee AG, Mader TH, Gibson CR, Tarver W, Rabiei P, et al. Spaceflight associated neuro-ocular syndrome (SANS) and the neuro-ophthalmologic

- effects of microgravity: a review and an update. NPJ Microgravity. 2020 Feb 7; 6:7. Erratum in: NPJ Microgravity. 2020 Aug 26; 6:23.
- Carbon dioxide (CO₂). Washington (DC): National Aeronautics and Space Administration, Office of the Chief Health and Medical Officer; 2023 Nov 11. NASA-STD-3001 Technical Brief; Report No.: OCHMO-TB-004 Rev C. [Accessed 4 May 2025]. Available from https://www.nasa.gov/wp-content/ uploads/2023/12/ochmo-tb-004-carbon-dioxide.pdf.
- Cole R, Wear M, Young M, Cobel C, Mason S. Relationship between carbon dioxide levels and reported congestion and headaches on the International Space Station. Houston (TX): National Aeronautics and Space Administration Johnson Space Center; 2017 Apr 29. [Accessed 2025 May 4]. Available from https://ntrs.nasa.gov/citations/20160012725.
- Dimai HP, Domej W, Leb G, Lau KH. Bone loss in patients with untreated chronic obstructive pulmonary disease is mediated by an increase in bone resorption associated with hypercapnia. J Bone Miner Res. 2001 Nov 1; 16(11):2132–41.
- Whitson PA, Pietrzyk RA, Jones JA, Nelman-Gonzalez M, Hudson EK, Sams CF. Effect of potassium citrate therapy on the risk of renal stone formation during spaceflight. J Urol. 2009 Nov; 182(5):2490–6.
- 11. Georgescu MR, Meslem A, Nastase I, Bode F. Personalized ventilation solutions for reducing $\rm CO_2$ levels in the crew quarters of the International Space Station. Build Environ. 2021 Oct 15; 204:108150.
- Stergiou Y, Escala DM, Papp P, Horváth D, Hauser MJB, et al. Unraveling dispersion and buoyancy dynamics around radial A + B → C reaction fronts: microgravity experiments and numerical simulations. NPJ Microgravity. 2024 May 9; 10(1):53.