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R E S E A R C H  A R T I C L E

Hypoxia is the diminished availability of oxygen to the 
cells of the body.14 Hypoxia in mammals can occur due 
to inadequate oxygenation of the lungs for extrinsic 

reasons, such as deficiency of oxygen in the environment, or 
due to intrinsic reasons such as venous to arterial shunts (intra-
pulmonary or intracardiac), inadequate transport and delivery 
of oxygen, or inadequate tissue oxygenation or oxygen use. 
Decreased oxygen availability to brain tissues can cause mild to 
severe deterioration in cognitive functional abilities, leading to 
impairment and, eventually, incapacitation and in severe cases 
death. Decreased cognitive abilities or incapacitation in an 
operational environment can lead to disastrous consequences, 
making accurate techniques of detection of the onset of hypoxia 
highly valuable.

The common ways to detect hypoxia in humans involve 
various physiological and environmental sensors that measure 
different attributes about the person being monitored and his/

her surrounding environment. Over the years, there have been 
several studies that offered designs of systems for hypoxia mon-
itoring using such sensors. A hypoxia detection and warning 
system was patented by Richardson as an aviation hypoxia 
monitor21 using a single pulse oximeter attached to the ear. It 
provided visual and audio signal feedback if the wearer’s blood 
oxygen saturation (Spo2) had a significant decrease. The hypoxia 
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detection and warning system described by Kelly and Pettit17 is 
composed of an electrochemical sensor located within a breath-
ing mask which was used to detect if the partial pressure of oxy-
gen dropped below a set point corresponding to 11,000 ft; it 
provided a vibratory warning. The study by Simmons et al.24 
presented a forehead-mounted reflectance oximetry system as 
a possible in-cockpit hypoxia early detection and warning sys-
tem. Pribil et al.20 suggest monitoring the lactate content in 
undiluted sweat for noninvasive diagnosis of hypoxia related 
symptoms. A distributed detection system to assign a severity 
level of hypoxia using multiple pulse oximeters and an altimeter 
was proposed by Acharya et al.2

Most of the systems proposed so far monitor the causes of 
hypoxia directly (through low Spo2 levels) or indirectly (through 
low oxygen partial pressure in the environment or ascension in 
altitude). Some detection methods also rely on the common 
effects of hypoxia (changes in heart rate, respiratory rate, lactate 
content in sweat). None of these systems assess the cognitive 
state of the monitored person, though degraded cognitive capa-
bility as a function of changing environmental stressors is often 
the real objective behind hypoxia monitoring. We know, for 
example, from a simulated climb of Mount Everest,1 that the 
mental efficiency and psychomotor performances of the climb-
ers progressively deteriorated with increased altitude. Studies 
on 24-h exposure to hypoxia9 showed that vigor, attention, 
visual and working memory, concentration, executive func-
tions, inhibitory control, and speed of mental processing wors-
ened due to hypoxia exposure. A study by Adam et al.3 showed 
that multitask performance declined during initial, unacclima-
tized high altitude exposure compared to sea level. These stud-
ies1,3,9 used cognitive assessment as a post processing tool for 
studying the effects of hypoxia, not as a real-time sensory out-
put that could detect hypoxia before its onset. Cognitive scores 
for real-time detection have not been suggested yet, possibly 
because the current nature of cognitive assessment requires 
active subject participation at frequent intervals, which is slow 
and may not be feasible in many environments. With the 
increased interest in passive monitoring of the human cognitive 
state,25,28,31 the investigation of usefulness of the cognitive state 
for hypoxia monitoring may now have practical implications. 
In this study, we aimed to analyze the nature of variation of the 
cognitive state of a human under the conditions that cause 
hypoxia and also investigate the associated correlations between 
physiological signals, such as blood oxygen saturation level 
(Spo2), and cognitive test scores. The analysis was performed on 
the scores collected from the SynWin30 (Activity Research 
Services, Chula Vista, CA) Multi-Task Battery (MTB), in 
which subjects are scored based on performance during vari-
ous memory, arithmetic, visual monitoring, and auditory 
monitoring tasks. For our dataset, we included measurements 
of respiration rate and in our volunteers there were only a few 
instances of hyperventilation (increased respiration rate). In 
future studies, as we add datasets from exposures under hypo-
baric conditions in which varying respiration activities and 
respiratory gas measurements are recorded, the model pre-
sented in this study may be reassessed. However, when there 

is minimal hyperventilation, Spo2 is considered a good indica-
tor of hypoxia. A significant correlation between cognitive test 
scores and Spo2 could possibly justify the use of cognitive scores 
for hypoxia detection if scores can be obtained automatically in 
real time (previous studies such as Whitley and Shender29 
have demonstrated a promising relationship between predicted 
reduction in cerebral function, degraded math performance, 
and Spo2). Therefore, as a preliminary step we carried out cor-
relation analysis between the Spo2 level and the cognitive assess-
ment scores [obtained from the modules in the test battery: 
Memory, Arithmetic, Visual Monitoring (VM), and Auditory 
Monitoring (AM) tasks]. The analysis showed noticeable cor-
relation. Based on the measured correlation, we also designed 
a real-time hypoxia detection system that uses the cognitive 
assessment scores as inputs.

We used data from an experiment conducted by the Naval Air 
Warfare Center Aircraft Division (NAWCAD).23 During this 
experiment, human volunteers continually performed the MTB 
while exposed to simulated altitudes ranging from ground level 
to 18,000 ft or 25,000 ft [5486 or 7620 m; in this paper ground 
level 5 650 ft (198 m) above sea-level]. The Reduced Oxygen 
Breathing Device was used to provide normobaric simulated alti-
tude exposures by changing the breathing air mix administered 
via an aviator oronasal mask and helmet.12 Using these data, we 
propose a real-time processing of the scores from the MTB 
through a hypoxia detection architecture consisting of multiple 
detectors associated with the different modules in the test battery. 
The individual hypoxia/no-hypoxia decisions of these detectors 
are integrated through a decision fusion algorithm to synthesize 
a global estimate of the hypoxic state of the monitored individual. 
Both local detectors and the fusion algorithm use a Neyman-
Pearson criterion for decision making. They fix the upper bound 
on the false alarm rate (probability that hypoxia is declared when 
it is absent) and maximize the true detection rate (probability 
that hypoxia is declared when it is present). The designed system 
demonstrates significant hypoxia detection power at low false 
alarm rates. It also provides an assessment of the contribution of 
each MTB module to the overall performance. For our dataset we 
observed that the Arithmetic task module provided the largest 
contribution, followed by the Auditory Monitoring and Memory 
task modules. The Visual Monitoring module contributed least 
to the hypoxia detection task.

METHODS

We posed hypoxia detection of a monitored subject as a binary 
hypothesis problem with hypothesis H0 5 the subject is nonhy-
poxic and hypothesis H1 5 the subject is hypoxic. Input is pro-
vided by N sensors, each attached to a different module in a 
cognitive assessment battery (in our study N 5 4). These N inputs 
are processed independently to synthesize N local decisions 
ui (i 5 1, …), where ui 5 +1 for accepting hypothesis H1, and 
ui 5 21 for accepting hypothesis H0. The fusion center com-
bines these N decisions to a global decision u0, where u0 5 +1 if 
hypothesis H1 is accepted, and u0 5 21 if hypothesis H0 is 
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accepted. The local and global detector performances are assessed 
through receiver operating characteristics (ROC) curves (proba-
bility of detection vs. probability of false alarm). Both local detec-
tors and the fusion center use the Neyman-Pearson criterion. 
They set an upper limit to Pf 5 P (accept H1/H0 is true) and max-
imize Pd 5 P (accept H1/H1 is true). The designed system was 
tested using experimental data (see following section on data 
collection).

Subjects
In an experiment conducted in 2008 by NAWCAD,23 45 datasets 
from 26 subjects (4 women and 22 men) were collected. (The study 
was approved by NAVCAD IRB, protocol NAWCAD.2008.0001, 
original approval date: 13 March 2008. U.S. Navy IRB proto-
cols comply with SECNAVINST 3900.39D and DoD Direc-
tive 3216.02, and Title 45, CFR 46. These protocols include 
compliance with the Declaration of Helsinki Revision 6, 
2008.) All test subjects were physically fit military or civil ser-
vice personnel between the ages of 18 and 50. Subjects were 
nonsmokers and successfully underwent the physical testing 
in accordance with NAWCAD test subject qualification stan-
dards, and had those results reviewed by the medical monitor 
to ensure that they were physically fit to participate. Datasets 
from 25 of these subjects were available for the current study.

Procedure
The subjects were exposed to varying normobaric altitude pro-
files using the reduced oxygen breathing device. One profile 
ranged from 0 to 18,000 ft (0 to 5486 m), and the other from  

Fig. 1.  Synwork1 MTB test screen; images presented clockwise from top left: Memory task, Arithmetic task, Audio 
Monitoring, Visual Monitoring.

0 to 25,000 ft (0 to 7620 m; severe hypoxia). The experimental 
profiles were the following:

Profile 1. Ascend at 1000 ft · s21 (304.8 m · s21) to 10,000 ft 
(3048 m); hold for 10 min; ascend to 18,000 ft (5486 m) at 
the same rate and hold for up to 20 min; and descend at the 
same rate to ground level.
Profile 2. Ascend at 1000 ft · s21 (304.8 m · s21) to 10,000 ft 
(3048 m); hold for 10 min; ascend to 25,000 ft (7620 m) at 
the same rate and hold for up to 20 min; and descend at the 
same rate to ground level.

Test scores from the MTB were recorded when subjects were 
exposed to one or two repetitions of both profiles with at least 48 
h between trials. Profile 1 was not used for the analysis presented 
in this study since none of the subjects developed hypoxic symp-
toms in this case. Only those subjects that required 100% oxygen 
administration due to cognitive, muscular, visual, or respiratory 
symptoms were considered hypoxic. Blood oxygen saturation 
(Spo2) and heart rate were also recorded using a transmittance 
type pulse oximeter used on the finger (515B, Novametrix Medi-
cal Systems Inc., Wallingford, CT), and two reflectance type 
oximeters used on the forehead (9847, Nonin, Plymouth, MN; 
and Rad-87, Masimo, Irvine, CA). Early termination criteria of 
the experiment included subject request, finger Spo2 below 60% 
for 10 s, or nonresponsiveness of the subject.

The MTB used was a version of the Synwork1,11 a PC-based 
tool for assessment of performance in a simulated work environ-
ment. The test was presented on a screen consisting of four mod-
ules as shown in Fig. 1. Test takers were instructed to pay equal 

attention to each module and 
switched between them, provid-
ing an answer in one module 
before proceeding to another. No 
specific module order was speci-
fied. Results were recorded after a 
session lasting 20 s and the com-
plete test lasted about 100 sessions 
(some test takers terminated the 
test earlier).

The detailed descriptions for 
the four modules are given 
below.

Module 1. Memory (Sternberg) 
task: the subject is shown a list of 
six letters for 5 s, and then shown 
a single letter and asked to answer 
’YES’ or ’NO’ as to whether the 
letter belongs to the previously 
shown list. The single letter 
shown changes once a response is 
recorded, continuing till the end 
of trial time (5 s in our case). After 
this period a new list is shown and 
the process is repeated. Points are 
awarded for correct responses 
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and deducted for each error (as well as for when there is no 
response).
Module 2. Arithmetic task: a three-column addition task 
presents two randomly selected integers greater than 99 and 
less than 1000, with their sum displayed as 0000. The task is 
to adjust the answer for the sum by clicking on scroll buttons 
below each character of the answer. Clicking on the DONE 
button results in points being awarded for correct answers, 
deducted for errors, and the presentation of a new problem. 
The task has no set time limits, thus it is completely 
self-paced.
Module 3. Visual Monitoring: a meter-style pointer moves 
gradually from ’100’ to ’0’. Clicking the mouse on the meter 
resets the pointer to 100. The task is to prevent the pointer 
from reaching 0 while maximizing the distance from 100 at 
the time of reset. Points are awarded for each reset, with 
their number being proportional to the distance of the 
pointer from 100 at the time of reset. Points are deducted for 
each second the pointer remains at 0.
Module 4. Auditory Monitoring: a sound is periodically 
played every 5 s. The sound consists of pure tones of two 
possible frequencies: low (1000 Hz) or high (2000 Hz). One 
of the sounds is assigned as positive (+) while the other as 
negative (2). The task is to click on an ALERT button on 
hearing the positive tone before the next tone is heard. Points 
are awarded for each correct detection (a click after a posi-
tive tone), and deducted for each incorrect detection (a click 
after a negative tone). If the subject provides no response 
there is neither an award nor a penalty.

Besides recording test scores, several additional metrics  
of subject performance were recorded. These include the 
following:

Reaction time: the time needed for the subject to respond to 
the memory task, audio monitoring, or visual monitoring 
cues. No reaction time was recorded for the arithmetic task 
as it was self-paced.
Dwell time: the time spent on any one of the four modules; 
the dwell time was calculated by aggregating the total time 
the cursor was on a specific module on the screen during a 
given 20-s period.

Fig. 2.  Experiment timeline indicating the regions used for dataset labeling (time progresses left to right).

Dataset labeling: In the NAWCAD study, each subject was 
exposed to the simulated altitude profiles as described above. 
Fig. 2 shows the timeline of the entire experimental run which 
lasted for 45 min for each subject. Interval A represents the 
time period at the beginning of the experiment when the sub-
jects were at varying altitudes but did not report any abnormal 
symptoms. Most subjects reported cognitive, muscular, visual, 
or respiratory symptoms at some stage during the 25,000-ft 
(7620-m) altitude run. It is assumed that the transition from a 
healthy state to a hypoxic state begins at the start of interval B 
since most subjects reported discomfort at the beginning of 
interval B. When experimental termination criteria were 
reached for any subject (i.e., Spo2 , 60% for 10 s, a maximal 
subjective symptom rating, or nonresponsiveness), 100% oxy-
gen was administered to this subject, which reverted the sim-
ulation altitude to the ground level and subjects were followed 
for a 15-min recovery period. In Fig. 2, the beginning of inter-
val D marks the time when oxygen administration was initi-
ated. The duration of 100% oxygen administration (interval 
D) differed for subjects. The data points collected in the 1-min 
period prior to interval D (denoted by interval C) were labeled 
as hypoxic. Sometimes, hypoxic symptoms may linger on 
even after 100% oxygen administration is completed; this may 
be due to the oxygen paradox.22 Additionally the revival 
period differs from person to person. Due to ambiguity in the 
actual state of the person, data points collected in intervals B, 
D, and E (1-min interval after 100% oxygen was adminis-
tered) were not included in the analysis. Interval F depicts the 
time period when the subject had completely revived due to 
oxygen administration. Points collected in intervals A and F 
were labeled as nonhypoxic. During the entire experimental 
run pulse rate was measured by pulse oximeter and heartrate 
via ECG and behaved as expected—it became elevated during 
simulated altitude exposure. The higher the altitude, the 
higher the heart rate. Heart rate recovered along with Spo2 
upon return to ground level.

Statistical Analysis
Physiological signals such as blood oxygen saturation (Spo2) are 
directly affected by conditions causing hypoxia. As a preliminary 

step, we analyzed the nature and 
degree of correlation between cog-
nitive scores and Spo2 levels under 
hypoxic and nonhypoxic condi-
tions. A high correlation value 
with Spo2 would corroborate the 
usefulness of cognitive test battery 
scores in detection of hypoxic 
conditions in an individual.

We used two correlation mea-
sures, namely the Pearson correla-
tion coefficient and the Spearman 
rank correlation coefficient.4 While 
the Pearson coefficient assumes a 
linear relationship between the 
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variables (in our case the scores and Spo2), the Spearman rank 
coefficient only assumes a monotonic (linear or nonlinear) rela-
tionship among the variables. Other correlation measures such 
as mutual information can also be used. The correlation coeffi-
cients between two random variables X and Y are defined as 
follows:

Pearson correlation coefficient:

	

( )
σ σ

= ,
.

P

X Y

cov X Y
r

�
Eq. 1.

Spearman rank correlation coefficient:

	

( )
σ σ

=
,

.

X Y

X Y

S

R R

cov R R
r

�
Eq. 2.

Here X 5 {x1, ..., xM } and Y 5 {y1, ..., yM } are sets of M values 
of two variables, cov is the covariance, s(·) is the standard devia-
tion. RX and RY are ranks of the observations X and Y when 
sorted in ascending order. In this study X represents the Spo2 
levels and Y represents the cognitive module scores coming 
from the MTB. The Arithmetic task and Memory task had the 
highest correlation scores followed by the Auditory Monitor-
ing module. Fig. 3 shows the sample scores for a randomly 
chosen subject. The top trace shows the altitude profile. The 
remaining traces (from second to fifth trace: Memory, Arith-
metic, Visual Monitoring, Auditory Monitoring) show the 
raw MTB assessment scores, s1–s4 (triangles), and the corre-
sponding 5-point moving averaged signals, z1–z4 (solid lines). 
Here the abscissa for all five traces show sampling instance, 
being sampled every 5 s.

To further investigate the usefulness of cognitive scores for 
hypoxia detection, we developed the distributed decision fusion 
architecture shown in Fig. 4 that can use cognitive scores as 
inputs and generate “yes/no” decisions on hypoxia in real-time. 
The system consists of the four modules of the MTB, each pro-
viding subject scores from the corresponding tasks (s1–s4). The 
scores are smoothed using a 5-point moving average filter to 
create the observations z1–z4. The processed observations zi, i 5 
1, …, 4, are forwarded to the associated local detectors for deci-
sion making. Each local detector computes a binary decision ui, 
i 5 1, …, 4, supporting H1 (ui 5 +1) or H0 (ui 5 21). The local 
detector decisions ui, i 5 1, …, 4, are sent to a fusion center, 
where they are combined using a likelihood ratio test, to gen-
erate a global decision u0 5 +1 supporting hypothesis H1 
(hypoxic) or u0 5 21 supporting hypothesis H0 (nonhypoxic).

Both the local detectors and the fusion center use the 
Neyman-Pearson criterion27 for decision making that fixes the 
false alarm rate (probability of accepting H1 given H0 is true) at 
a prespecified level, 0 , a , 1 and then attempts to achieve the 
maximum probability of detection (probability of accepting H1 
given H1 is true). The local detector false alarm and true detec-
tion rates are used by the Decision Fusion Center (DFC) for 
generating global decisions. A detailed mathematical exposi-
tion of the distributed detection system is available as Appen-
dix A online; https://doi.org/10.3357/amhp.5040.2019.

Local decision rule. The observations zi, i 5 1, ..., N (in our 
study N 5 4, see Fig. 4) received by the local detectors are the 
moving averaged cognitive scores. These observations are 
assumed to have continuous probability distributions condi-
tioned on the hypothesis. Each local detector fixes the false 
alarm rate at a specific level (ai, i 5 1, ..., N) and uses the 
Neyman-Pearson test to compute the local true detection rates.

Global decision rule. The observations for the fusion center are 
the local detector decisions ui, i 5 1, ..., N. Once the global false 
alarm is fixed to a specified level (denoted by a0), a randomized 
Neyman-Pearson rule (for more details see Van Trees,27 p. 43) is 
implemented to compute the global (DFC) detection rate.

Cognitive score density estimates. We estimated the distribu-
tions of the cognitive scores zi using the technique of kernel 
density estimation19 with a Gaussian kernel. Kernel density 
estimation is a nonparametric technique that uses the available 
data points to construct a smooth probability density estimate 
of the form:

	
( )

=

− =   ∑
1

1
; .

M
i

i

x x
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Eq. 3.

Here the chosen kernel is parameterized by h, often referred to as 
the kernel bandwidth; M is the number of independent and iden-
tically distributed example data points each represented as xi; K(·) 
is the kernel. In this study we chose the Gaussian kernel,
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π

−
=

21

2
1

.
2

x

K x e

�
Eq. 4.

For each local detector, the corresponding collective set of data 
points over all subjects (25 in total) was used to estimate the 
densities. The kernel bandwidth was chosen based on the algo-
rithm described in Botev et al.7 (Algorithm 1, page 2932). In 
Fig. 5, the kernel probability density function estimates under 
each hypothesis are shown superimposed on the histograms 
(probability mass function) of each component score. The con-
tinuous density estimates were used in the local decision-
making process. Sweeping the local false alarms over the 
interval [0, 1] provides the local ROC curves shown in Fig. 6. 
Based on inspection of the ROC curves, the detectors associ-
ated with the arithmetic task and memory task modules seem 
to perform the best (the more the ROC curve is toward the top 
left corner for the same false alarm rate, the higher the detec-
tion power), followed by the detector associated with the audio 
monitoring module. The visual monitoring module has the 
lowest detection power of the four modules.

RESULTS

Correlation Analysis
Since physiological measurements like Spo2 are useful in detect-
ing the onset of hypoxia, we investigated the relationship 
between the cognitive score components and Spo2 measure-
ments through two correlation measures. These are the Pearson 
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correlation coefficient and the Spearman rank correlation coef-
ficient.4 The mean (computed over 25 subjects) Pearson corre-
lation coefficient between Spo2 levels and the Arithmetic task, 
AM task, Memory task, and VM task were 0.437, 0.256, 0.246, 
and 0.139, respectively. The mean Spearman rank correlation 
coefficients in the same order were 0.121, 0.094, 0.091, and 
0.044. Both correlation measures highlight the order of correla-
tion of the cognitive scores with Spo2 as Arithmetic task  AM 

; Memory task . VM (; refers to similar). Existence of cor-
relation with Spo2 underlines the usefulness of cognitive scores 
for hypoxia detection.

Fusion of Cognitive Scores
We studied the detection performance of the system shown in 
Fig. 3 through the ROC curves. A detector A is said to be more 
powerful than another detector B, if ( ) ( )≥A B

D f D fP P P P , where 

Fig. 3.  Simulated altitude profile, raw, and moving averaged MTB assessment scores.
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( )⋅A

D
P  and ( )⋅B

D
P  are the detection rates of detectors A and B, 

respectively, as functions of an arbitrary false alarm rate of 
[ ]∈ 0,1fP .

Data from all 25 subjects were compiled together to model the 
local observation densities under each hypothesis. The local 
detector false alarm rates ai, i 5 1, ..., N (N 5 4 in our study) were 
fixed. The corresponding local true detection rates were com-
puted from the local ROC curves (see Fig. 6). The local detector 
operating points (false alarm and true detection pair) were used 
to compute the global false alarm and true detection rates (see 
Thomopolous et al.,26 section II-B, p.648). Varying the global 
false alarm rate over the interval [0, 1] generated the global ROC 
curves.

Fig. 4.  Binary decision fusion setup.

Fig. 5.  Empirical distributions and kernel density estimates for cognitive scores. Clockwise from top left: Memory task score, Arithmetic task score, Audio Monitoring 
(AM) score, Visual Monitoring (VM) score.

In Fig. 7 we show the fusion 
center ROC curve (diamond 
markers) for two cases; the local 
false alarm rates ai, i 5 1, ..., N, 
were fixed at 0.1 (case 1, as shown 
in Fig. 7A) and 0.05 (case 2, as 
shown in Fig. 7B). The local 
detector detection rates obtained 
from local ROC curves (see Fig. 
6) for case 1 were PD1 (Memory 
task) 5 0.706, PD2 (Arithmetic 
task) 5 0.732, PD3 (VM) 5 0.383, 
PD4 (AM) 5 0.514. The local 
detector detection rates for case 2 
were PD1 (Memory task) 5 0.644, 

PD2 (Arithmetic task) 5 0.643, PD3 (VM) 5 0.352, PD4 (AM) 5  
0.466. Comparing Figs. 7A and 7B, a certain deterioration in 
the fusion center performance for case 1 is observed compared 
to that in case 2, especially in the low false alarm region (a0 , 
0.05). This performance degradation can be attributed to the 
fact that in case 2 local detector performances were superior (in 
terms of probability of error).

By removing a sensor (corresponding to a module) one at a 
time, we analyze the individual contributions of each sensor. 
The global performance is presented in Table I for case 1 and 
Table II for case 2.

Inspection of Table I and Table II shows that the Arithme-
tic task score makes the largest contribution toward accurate 
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hypoxia detection. This is because in case 1, removal of the 
corresponding module from the fusion architecture resulted 
in approximately 13.5% and 24.9% drops in the overall detec-
tion accuracy compared to when all four modules were used 

for fusion under global false alarms of 0.1 and 0.05, respec-
tively. For the same global false alarms, for case 2, on removal 
of the Arithmetic task module, the accuracy dropped by 
approximately 8.9% and 13.9%, respectively, compared to 

Fig. 6.  ROC curves for local detectors. Clockwise from top left: Memory task score, Arithmetic task score, Audio Monitoring (AM) score, Visual Monitoring (VM) score.

Fig. 7.  Global ROC curves with local detector false alarm at A) 0.1 and B) 0.05.
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when all four modules were used in fusion. A similar result is 
observed in Figs. 7A and 7B, where the ROC curve with the 
Arithmetic module removed lies at the bottom (furthest away 
from the top left corner). The performance degradation at the 
fusion center due to the removal of the Memory module has a 
very similar effect as can be visualized in Figs. 7A and 7B, 
where the ROC curve with the Memory module removed lies 
close to that obtained by removing the Arithmetic module. 
The Visual Monitoring module made the least contribution 
toward hypoxia detection since removal of this module 
resulted in the lowest shift of the fusion center ROC curve 
(diamond markers) in the bottom right direction (Figs. 7A 
and 7B).

The higher contribution of the Arithmetic and Memory task 
modules are in agreement with the trend observed in the cor-
relation analysis. The highest correlation of the Arithmetic 
component with Spo2 is consistent with the highest contribu-
tion of this sensor toward hypoxia detection.

Leave-One-Out Cross Validation
To investigate the generalizability of the fusion architecture, we 
performed a leave-one-out analysis. The process involves leav-
ing out each subject’s data and using the data from the 
remaining subject pool to design the detection system. The 
leave-one-out process was repeated 25 times (each time leaving 
out the data from 1 of the 25 subjects). The detection perfor-
mance was examined for three cases; namely global false alarm 
a0 fixed at 0.05, 0.1, and 0.2.

The global detection rates were 0.81 6 0.011, 0.86 6 0.009, 
and 0.938 6 0.005, respectively. For all cases, the local false 
alarms were fixed at ai 5 0.1, i 5 1, …, N. The corresponding 
local detection rates were PD1 (Memory task) 5 0.707 6 
0.013, PD1 (Arithmetic task) 5 0.732 6 0.014, PD2 (VM) 5 
0.391 6 0.022, PD4 (AM) 5 0.513 6 0.011. Small standard 
errors show that the detection performance was not affected 
considerably by changing the subject pool and therefore the 
system can have generic applicability.

Table I.  Global Detection Rates with Sensor Modules Removed One at a Time for Case 1.

GLOBAL FALSE ALARM 5 0.1 GLOBAL FALSE ALARM 5 0.05

MODULE REMOVED DETECTION RATE % CHANGE DETECTION RATE % CHANGE

None 0.857 - 0.811 -
Memory 0.761 11.2 0.625 22.9
Arithmetic 0.741 13.5 0.609 24.9
VM 0.817 4.6 0.753 7.1
AM 0.790 7.8 0.708 12.7

Table II.  Global Detection Rates with Sensor Modules Removed One at a Time for Case 2.

GLOBAL FALSE ALARM 5 0.1 GLOBAL FALSE ALARM 5 0.05

MODULE REMOVED DETECTION RATE % CHANGE DETECTION RATE % CHANGE

None 0.894 - 0.802 -
Memory 0.813 9.06 0.690 13.9
Arithmetic 0.814 8.9 0.690 13.9
VM 0.876 2.01 0.744 7.2
AM 0.875 2.1 0.716 10.7

Incorporation of Reaction and 
Dwell Times
In the experimental data collec-
tion process, reaction time was 
recorded for the memory and 
auditory tasks. The arithmetic 
task recorded response time. For 
all four modules (Memory task, 
Arithmetic task, Visual Monitor-

ing, Auditory Monitoring) dwell times were recorded. Reac-
tion/response time was the interval time between the 
presentation of the stimulus and the submission of response 
from the test taker. Dwell time measured the time interval for 
which the mouse pointer was within any one of the four task 
module quadrants.

Fig. 8 shows the fusion center’s ROC curves when the reac-
tion times and dwell times were incorporated in the fusion 
framework. The trace with diamond markers shows the fusion 
center’s ROC when only the reaction and dwell times were 
fused. The trace with circle markers is the ROC obtained by 
combining only the cognitive task scores. We observe that by 
themselves the reaction and dwell time measurements do not 
have significant detection power. However, when combined 
with the task score measurements, the fusion center’s ROC 
(square markers) achieves some improvement, especially in 
the 0.05 to 0.2 false alarm range. For example, when we com-
bine the four task scores (Memory task, Arithmetic task, 
Visual Monitoring, Auditory Monitoring) then for a false 
alarm rate of 0.1 we get a detection rate of approximately 0.86. 
When we add to the four task scores the seven reaction/dwell 
times, then for the same false alarm rate of 0.1 the detection 
rate jumps to 0.91.

DISCUSSION

We studied the usefulness of cognitive scores from the MTB 
(Memory, Arithmetic, Visual Monitoring, and Auditory Moni-
toring tasks) in detecting hypoxia. The cognitive scores were 
shown to be correlated with Spo2 measurements based on both 
Pearson and Spearman correlation coefficients. Since Spo2 is a 
good indicator of hypoxia, the correlation analysis supports the 
idea of using cognitive state estimates for hypoxia detection. 
Furthermore, in this particular battery of tests, correlation coef-
ficients showed that the Arithmetic task scores have the highest 
correlation with Spo2 levels as compared to the other cognitive 
component scores.

We further used cognitive 
assessment scores from multiple 
modules as real-time inputs to a 
distributed detection system for 
hypoxia detection. Local detec-
tors assigned to each assess-
ment module process the scores 
and generate “yes/no” decisions 
on hypoxia. A fusion center 
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combines local decisions to generate a global decision. The 
ROC curves show that there is improvement in detection per-
formance of the fusion center compared to the local detectors 
working independently with any of the component assessment 
scores.

We analyzed the degree of contribution of each compo-
nent score of the MTB toward the global decision-making 
process using the ROC curves. The Arithmetic task module 
seemed to contribute the most. The Memory task and AM 
modules followed next with similar contributions. The VM 
module had relatively the least contribution. In general this 
approach of using ROC curves for sensor analysis can help 
in creating a hierarchy of sensor importance such that for a 
known tolerable global false alarm, the appropriate groups 
of sensors could be identified and used (and some sensors 
of only marginal contribution can be dropped). Neverthe-
less, scores from all four modules had reasonable detection 
power (see local ROC in Fig. 6). A system that combines 
physiological sensor observations such as oximeter read-
ings and heart rate with cognitive scores might increase 
hypoxia detection performance as compared to a system 
dependent on physiological sensors or cognitive scores 
exclusively.

There is a growing interest in doing cognitive tests and 
recent studies have used such tests to assess variations in 
human physiological state under various conditions. For 
example, Brebeck et al.8 and Germonpre et al.13 use cognitive 

Fig. 8.  Effect of incorporation of reaction and dwell times in the global fusion performance.

tests to study the effects of nar-
cosis in divers breathing differ-
ent gas mixtures. However, in 
general, real-time data collec-
tion from such MTB cognitive 
tests is not easy because of the 
requirement of active subject 
participation. Passive and fast 
test interfaces are required, such 
as the cognitive assessment 
based on the critical flicker 
fusion frequency test15 and the 
use of eye metrics to assess the 
cognitive state of the subject.18 
An alternative would be the use 
of physiological measurements 
with high correlation to cogni-
tive functioning such as elec-
troencephalography6 (EEG) and 
functional near-infrared spec-
troscopy16 (fNIR) to estimate 
cognitive state. Currently, many 
studies attempt to undertake 
cognitive tests in a passive way. 
Yet there is no feasibility study 
that justifies such efforts to do 
passive tests. The current study 
indeed shows that if passive 
cognitive test scores are col-

lected and available, they are informative enough to be used 
for hypoxia detection under certain circumstances. Based on 
the findings about the contributions of each module toward 
hypoxia detection, newer passive test batteries focusing on 
analytical, auditory, and/or memory-related activities can be 
designed.

The study presented here considers short duration unaccli-
matized exposure to altitude. Hence, remodeling (density esti-
mation and threshold computation) might be needed to address 
hypoxia detection under long duration exposures. Further-
more, the system was tested on data collected under normo-
baric conditions. Normobaric datasets are likely to be different 
from data collected in an altitude chamber (hypobaric condi-
tions), where the variation of atmospheric pressure is taken into 
account as well. Recent studies5,10 have shown that hypobaria 
can have effects on the onset and severity of hypoxia. Even 
though the modeling and decision making framework remain 
identical to that presented in this paper, the detection results 
may vary if a hypobaric data set is used.
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APPENDIX A.  MATHEMATICAL FORMULATIONS FOR 
THE DISTRIBUTED DETECTION SYSTEM

We provide a detailed discussion of the mathematical formula-
tions for the various decision-making components in the dis-
tributed detection system shown in Fig. 4 in the article.

Neyman-Pearson Test
The Neyman-Pearson test27 fixes the false alarm rate [P (accept 
H1 given H0 is true)] at a prespecified level, α< <0 1 and then 
attempts to achieve the maximum probability of detection [P 
(accept H1 given H1 is true)]. Let the observations at a Neyman-
Pearson detector be denoted by y. We solve for the threshold t* in:

	 0(Λ( ) ) Λ = ,P y H d α
� Eq. A.

and make a decision based on a likelihood ratio test of the form:

	
( ) ( )

( )
= ≷

1

0

1 *

0

Λ .

H

H

P y H
y t

P y H �
Eq. B.

The threshold t* computed from Eq. A determines the corre-
sponding optimal detection rate q*:

	 ∫`

t*
( )( ) = *

1
Λ Λ .P y H d q

� Eq. C.

Local Decision Rule
The observations zi, i 5 1, ..., N (in our study N 5 4, see Fig. 4 
in the article), received by the local detectors are the moving 
averaged cognitive scores. These observations are assumed to 
have continuous probability distributions conditioned on the 
hypothesis. In a following section, we describe how the contin-
uous distributions ( ) = =, 1,.., , 0,1i jP z H i N j  were estimated. 
Each local detector fixes the false alarm rate at a specific level 
( )α = …, 1, ,

i
i N  and solves for the corresponding threshold *

i
t  

such that:

	 ∫`

t*
( )( ) α=

0
Λ Λ .

i i
P z H d

� Eq. D.

The local detectors perform a likelihood ratio test to accept one 
of the hypotheses, namely:
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Eq. E.

The corresponding true-detection rate of the ith local detector is:

	 ( )= = =
1

1
iD i

P P u H � Eq. F.

Global Decision Rule
The observations for the fusion center are the local detector 
decisions ui, i 5 1, ..., N. Once the global false alarm is fixed to 
a specified level (denoted by α

0
), the likelihood ratio at the DFC 

takes the form:
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Eq. G.

The threshold *

0
t  is computed such that the global false alarm is 

equal to α0. Assuming that the local decisions are independent 
conditioned on the hypotheses, we have:
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Eq. H.

Since the local decisions are Bernoulli random variables, the 
conditional probability distributions ( )( )0Λ

i
P u H  and 

( )( )1Λ
i

P u H  for the ith sensor likelihood ratio are discrete. 
Therefore, to attain all possible values of global false alarm, a 
randomized Neyman-Pearson rule is implemented (for more 
details see Acharya et al.,2 p. 43). Let the set of values of ( )Λ u , at 
which the probability masses of ( )( )Λ jP u H , j 5 0, 1 are 
located be denoted by L. The chosen arbitrary α

0
 is obtained 

using a convex combination:

	 ( )
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Eq. I.

Here g ε [0, 1] is the convex combination parameter. The 
threshold tl ε L is computed such that it is the largest value of 

( )Λ u  satisfying:
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Eq. J.

The threshold tu ε L is computed such that it is the smallest 
value of ( )Λ u  satisfying:

	 ( )

( )( ) α
>
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Λ
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�
Eq. K.

The corresponding global true detection rate is calculated as:

	
( )( ) ( )
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Eq. L.

The probability mass functions P (L(u)|Hj), j 5 0, 1 are 
completely defined by the local detector operating points 
( ),

i iD F
P P .26∫`

t* 1(Λ( ) | ) Λ.
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