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R E S E A R C H  A R T I C L E

Improving aviation safety has become an increasingly chal-
lenging task since most easily recognizable hazards, such as 
technological deficiencies, have been reduced significantly 

over the last decades and the remaining ones are often of a 
latent or insidious nature. Current human factors models of 
accident causation such as the popular “Swiss cheese” model16 
therefore take a systemic perspective acknowledging hazards 
related to both the aircraft operators themselves and their orga-
nizational environment.

Nevertheless, in empirical studies of aircraft accident causes 
based on such a systemic perspective, there is usually a notable 
gradient in the frequency of identified contributory factors 
across the system levels, with unsafe operator acts being identi-
fied most often and organizational influences least often.17 It 
seems likely that the absence of organizational, supervisory, and 
working condition-related factors is at least in part due to the 
reliance on accident investigation board reports, which vary in 
scope and may investigate more distal conditions surrounding 

an accident only in the most severe cases.27 Further complicat-
ing the issue, information on the relevant comparison group 
(i.e., pilots who did not experience an accident or incident) is 
usually not available or only in aggregated form in report-based 
retrospective studies.

These issues can be addressed through prospective studies, 
which, however, introduce different methodological problems. 
Aviation safety-related prospective studies can only use proxy 
outcomes such as line check ratings or simulator performance, 
and are often based on small samples, which is problematic 
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given the large number of potentially interacting hazardous and 
protective factors operating at different system levels. Isolating 
the independent contribution of individual system character-
istics to risk is difficult when samples are small relative to the 
number of characteristics; conventional techniques such as uni-
variate prescreening of candidate predictors or multiple regres-
sion-based stepwise variable selection are problematic since 
they do not consider the effects of discarded predictors and may 
result in upwardly biased effect estimates.7 They furthermore 
generally assume linear additive relationships between predic-
tors and outcome.

Several alternative procedures have been proposed to solve 
the problem of selecting influential predictors.28 One approach 
which has recently gained popularity is based on Random For-
ests, a machine learning technique which is appropriate for sit-
uations when the number of predictors is large relative to the 
sample size, avoids overfitting, and automatically takes into 
account interactions between predictors, while also generating a 
measure of predictor importance which can be used for vari-
able selection.23 It is, therefore, well-suited for application to the 
aviation hazard identification problem outlined above and 
its capability for predictor identification has, to the best of our 
knowledge, so far not yet been used in the aviation safety field.

In this cross-sectional explorative study, we therefore apply 
the Random Forest method in order to identify potential avia-
tion safety hazards by selecting the most powerful predictors of 
simulator flight performance in a sample of professional heli-
copter pilots from a deliberately broad set of predictors cover-
ing both personal and occupational human factors safety 
aspects. The predictors are derived from pilot questionnaire 
self-reports and aeromedical fitness examination records and 
performance is assessed through flight instructor ratings of 
the pilots’ handling of two naturalistic system malfunction sce-
narios. Our aim was to evaluate, in an aviation safety context, 
whether the Random Forest method would produce meaning-
fully interpretable results when the number of predictors was 
large relative to the sample size.

METHODS

Subjects
The analysis reported herein is based on data from a study on 
age and flight safety in helicopter emergency medical services 
(HEMS). Active HEMS pilots employed by one of five air rescue 
operators (two based in Germany and one each in Austria, 
Poland, and the Czech Republic) who completed a simulator 
flight during the data collection period from September 2015 to 
October 2016 at training sites in Warsaw, Poland (Polish opera-
tor), or in Hangelar, Germany (all other operators), were asked 
to participate. Although study participation was open to both 
genders, the operators’ HEMS pilot workforces consisted 
almost exclusively of men at the time of recruitment, resulting 
in a male-only sample. The study was approved by the Ethics 
Committee at Munich University’s Faculty of Medicine (Project 
No. 466-15) and written informed consent was obtained from 

all study subjects prior to data collection. Subjects were able to 
separately indicate their consent to the collection of simulator 
performance data and of aeromedical examination record data.

Materials and Procedure
We collected data from three distinct sources: 1) standardized 
ratings of simulator flight performance in two malfunction 
scenarios made by training instructors; 2) self-report question-
naires from participating pilots; and 3) records of the par-
ticipating pilots’ statutory aeromedical examinations. Subjects 
completed a simulator flight for training or testing purposes 
as mandated by their employer or the responsible regulatory 
authority in order to maintain currency of their helicopter type 
rating or of operating procedures, including emergency proce-
dures. Each session consisted of a preflight briefing of the 
pilot by the flight instructor, the actual simulator flight, 
and a short postflight debriefing. At Hangelar, the flights were 
conducted in motion-capable full flight simulators. A non-
motion-capable flight training device was used in Warsaw. At 
both sites, the simulators corresponded to the helicopter types 
flown by the pilots during their actual duty and could simulate 
different geographies, including urban structures and weather 
conditions.

Embedded in this regular training/check flight, which was 
independent of the study, the responsible flight instructor—
who had previously been briefed by a member of the research 
team—deployed two study malfunction scenarios, which 
together took about 10 min to complete, and rated the pilot’s 
responses according to a standardized rating sheet. Several 
experienced HEMS pilots had been consulted prior to data 
collection in order to select relevant scenarios and to develop 
the corresponding rating scheme.

The first scenario, “transmission oil system malfunction,” 
was designed to assess the pilot’s vigilance and situational 
awareness. It involved the timely detection of a gauge indicating 
helicopter transmission oil status moving slowly toward a criti-
cal value and terminated as soon as the pilot detected the prob-
lem, or the critical value was reached. More specifically, the 
malfunction concerned a gradual decrease in transmission oil 
pressure in the Hangelar simulators, and a gradual increase in 
transmission oil temperature in the Warsaw simulator, since the 
oil pressure decrease scenario could not be implemented in the 
latter simulator. The respective gauges were located next to each 
other at similar positions within the flight instrument panel 
in all simulators, and the corresponding malfunctions are 
comparable in terms of their implications for flight safety. 
We therefore assumed the tasks to have similar properties in 
terms of their demands to situational awareness. However, the 
time from initiation of malfunction to hitting the critical value, 
which was defined as the first occurrence of an additional opti-
cal or acoustic warning signal by the system, was approximately 
twice as long in the Hangelar simulator compared to the War-
saw simulator (170 vs. 84 s). Recognition of the malfunction 
by the pilot ahead of the critical value was rewarded with two 
points (same weight as an “important” subtask of the second 
scenario described below).

http://prime-pdf-watermark.prime-prod.pubfactory.com/ | 2025-02-05



Aerospace Medicine and Human Performance  Vol. 89, No. 11 N ovember 2018    969

PERFORMANCE & RANDOM FORESTS—Bauer et al.

The “tail rotor drive failure” scenario constituted a complex 
emergency situation which required the pilot to bring the 
aircraft safely to the ground via a so-called autorotation pro-
cedure. Instructors rated performance of 9 subtasks which 
involved situational awareness, decision-making, knowledge of 
procedures, spatial orientation, and psychomotor control, for a 
maximum of 12 points. Proper completion of subtasks yielded 
one or two points, based on their importance to the successful 
completion of the entire procedure. There were 15 simulator 
flights concurrently rated by two instructors, with good inter-
rater agreement over a total of 141 binary decisions (subtask 
ratings); Cohen’s k 5 0.91 (94.3% concordant decisions).

In the briefing parts of the session, pilots were asked to fill in 
short questionnaires inquiring about flight experience and cur-
rent self-rated health (preflight briefing), and about subjectively 
experienced strain and simulator sickness during the flight 
as well as risk-seeking propensity (postflight debriefing). Addi-
tionally, the pilots were handed a longer questionnaire cover-
ing working conditions, subjective experiences at work, and 
general sense of well-being, which they were asked to fill in and 
send back over the course of the next few days. Wherever pos-
sible, questionnaire scales and items had been taken from 
published, psychometrically validated instruments such as the 
Copenhagen Psychosocial Questionnaire. They were included 
based on their relevance regarding health, work performance, 
and safety.14,20

Consenting pilots were also asked to provide details of the 
aeromedical examiners and centers they had visited during the 
preceding 10 yr and release them from their nondisclosure 
duty. We mailed requests for transfer of full aeromedical exami-
nation documents to all specified physicians/centers and sent a 
reminder letter after 4 wk. If the reminder also did not elicit 
a response, we made at least one more contact attempt via tele-
phone or email. We received digitalized or paper documents 
dated between April 2004 and July 2016 from 23 physicians/
centers (61% of 38 contacted). All documents were searched for 
information concerning quantitative clinical measurements of 
any kind, as well as smoking and medication. Entry of the cor-
responding data was conducted according to a coding manual 
developed after an initial review of the received documents and 
continuously revised during the data entry process.

Statistical Analysis
Our main outcome variable, simulator performance, was calcu-
lated as the sum of instructor ratings for the two study scenarios 
(ranging theoretically between a minimum of 0 and a maxi-
mum of 14 attainable points). The predictor variables were 
based on the self-report questionnaires and aeromedical exam-
ination findings. Questionnaire-based variables were calcu-
lated as scale means or sum scores, or (in the case of single-item 
measures) the untransformed item scores. We selected indi-
vidual medical risk markers for analysis based on their avail-
ability in the aeromedical examination findings data and 
on their association with health status and incapacitation risk 
of a pilot. Moreover, we included as predictors two composite 
indices based on the individual risk markers: risk of a fatal 

cardiovascular event within 6 mo according to the SCORE 
algorithm,5 and a “physiological dysregulation index” based on 
the gerontological concept of “biological aging,”4 which can be 
viewed as a subclinical trajectory toward frailty and disease 
due to insidious functional decline in multiple organ systems.13 
Both cardiovascular event risk scores such as SCORE and phys-
iological dysregulation indices have been found to be associated 
with cognitive decline.2,9

Our dysregulation index is based on all available mea-
surements of 18 health risk-related biomarkers of cardiovas-
cular, metabolic, liver, kidney, immune, hematologic, and 
ocular function as well as hearing level. For each biomarker, 
a subject’s probability to have a biomarker reading within an 
“unhealthy” range (e.g., systolic blood pressure .140 mmHg) 
was estimated based on the longitudinal individual-specific dis-
tribution of biomarker readings using a linear mixed model. 
The dysregulation score is the sum of these probabilities (thus 
ranging theoretically between 0 and 18) and can be understood 
as a pilot’s expected number of biomarker readings outside the 
healthy range (see Appendix A online, https://doi.org/10.3357/
AMHP.5086sd.2018, for methodological details).

Finally, we also included simulator type as a predictor 
because of the aforementioned differences in the transmission 
oil failure scenario and in motion capability. Only variables 
where less than one-third of subjects had missing data were 
used for the analysis. In total, this resulted in a set of 54 predic-
tors which can be categorized as psychosocial and physical 
work stressors (including protective factors such as social sup-
port), psychosocial and physical strain symptoms, other 
aspects of working conditions (e.g., working hours), medical 
risk markers, subjective experience of the pilot during the 
simulator training session, and general pilot characteristics 
(Table I; see Appendix B online, https://doi.org/10.3357/
AMHP.5086sd.2018, for further details). For all medical risk 
markers except physiological dysregulation (which was based 
on the complete longitudinal information available), we used 
only the latest available assessment in the simulator perfor-
mance prediction.

Table I also shows the number of missing data points per 
predictor. To impute missing values, we used the R implemen-
tation of the missForest algorithm,21 which iteratively applies 
the Random Forest method (described below). In order to 
account for uncertainty in the imputation estimate, we created 
a total of 20 imputed datasets and compared or aggregated anal-
ysis results across these datasets where appropriate.

After the imputation step, we applied Random Forests for 
simulator performance prediction and variable selection. Ran-
dom Forest is a supervised machine learning method consist-
ing of an ensemble of decision trees which attempt to predict 
the outcome by defining, based on predictor values, groups that 
are homogeneous with respect to the outcome. In Random For-
ests, many such trees are “grown” on random subsamples of the 
study subjects and predictor variables, and the single trees’ pre-
dictions are averaged to produce the Forest’s prediction. Since 
each component tree is trained only on a random subsample, 
the remaining (“out-of-bag”) cases can be conveniently used as 
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Table I.  Analysis, Variable Sources, and Descriptives (Mean/SD for Quantitative Variables, N/% for Binary Yes/No Variables in Italics).

VARIABLE CATEGORY  
AND VARIABLE

# OF ITEMS/SCALE  
RANGE SOURCE # MISSING

MEAN (SD)/ 
N (%)

ASSESSMENT-SIMULATOR  
LAG*

Outcome
 S imulator performance 10/0–14 Rating by flight instructor 0 11.4 (2.1) --
Psychosocial work stressors
 E motional demands 2/1–5 Pilot self-report (questionnaire) 0 2.3 (0.6) --
 S ocial support 4/1–5 Pilot self-report (questionnaire) 0 3.4 (0.9) --
  Work pace 2/1–5 Pilot self-report (questionnaire) 0 3.3 (0.7) --
  Work predictability 3/1–5 Pilot self-report (questionnaire) 0 3.0 (0.8) --
 R ole clarity 3/1–5 Pilot self-report (questionnaire) 0 4.7 (0.4) --
 R ole conflict 4/1–5 Pilot self-report (questionnaire) 0 1.8 (0.6) --
  Autonomy 3/1–5 Pilot self-report (questionnaire) 0 3.1 (0.7) --
 S upervisor Feedback 3/1–5 Pilot self-report (questionnaire) 0 3.0 (1.1) --
 P rocedural Justice 4/1–5 Pilot self-report (questionnaire) 0 3.9 (0.8) --
 E ffort at work 2/2–8 Pilot self-report (questionnaire) 0 4.7 (1.6) --
 R eward at work 5/5–20 Pilot self-report (questionnaire) 0 13.9 (2.2) --
Physical work stressors
 P hysical demands, general 10/1–5 Pilot self-report (questionnaire) 0 3.2 (0.6) --
 P hysical demands, headgear 4/1–5 Pilot self-report (questionnaire) 0 2.5 (0.9) --
Psychosocial strain
 I rritation 6/1–7 Pilot self-report (questionnaire) 0 2.2 (0.7) --
  Work engagement 9/0–6 Pilot self-report (questionnaire) 0 4.8 (0.8) --
 D etachment from work 4/1–5 Pilot self-report (questionnaire) 0 3.2 (0.8) --
 S ubjective well-being 5/0–25 Pilot self-report (questionnaire) 0 19.0 (3.5) --
 E nergy / Fatigue 4/4–20 Pilot self-report (questionnaire) 0 17.2 (2.0) --
Physical strain
  # of body regions with pain† 13/0–13 Pilot self-report (questionnaire) 2 1.0 (1.7) --
Other work-related factors
  Work hours per month -- Pilot self-report (questionnaire) 3 169 (27) --
  Vacation days per year -- Pilot self-report (questionnaire) 1 24.8 (7.7) --
  Day shift duty? -- Pilot self-report (questionnaire) 2 48 (0.98) --
  Night shift duty? -- Pilot self-report (questionnaire) 2 32 (0.65) --
  24 h stand-by shift duty? -- Pilot self-report (questionnaire) 4 5 (0.11) --
  Other shift type duty? -- Pilot self-report (questionnaire) 3 3 (0.06) --
  Any limit on flight time? -- Pilot self-report (questionnaire) 9 37 (0.88) --
Medical risk markers‡

  Smoking? -- Aeromedical records 1 10 (0.20) 94
  Any medication? -- Aeromedical records 1 9 (0.18) 89
 S ystolic blood pressure (mmHg) -- Aeromedical records 0 130 (13) 92
 R esting heart rate (bpm) -- Aeromedical records 0 67.8 (8.7) 92
 EC G QTc interval (ms) -- Aeromedical records 15 406 (21) 91
  Body mass index (kg · m22) -- Aeromedical records 1 27.1 (3.3) 89
  Total cholesterol (mmol · L21) -- Aeromedical records 3 5.3 (0.8) 102
  HDL cholesterol (mmol · L21) -- Aeromedical records 8 1.5 (0.3) 349
  Triglycerides (mmol · L21) -- Aeromedical records 11 1.5 (0.7) 302
 F asting glucose (mmol · L21) -- Aeromedical records 3 5.3 (0.6) 127
  Alanine aminotransferase (U · L21) -- Aeromedical records 14 37.1 (22.7) 712
  Aspartate aminotransferase (U · L21) -- Aeromedical records 14 28.2 (9.9) 712
 S erum creatinine (µmol · L21) -- Aeromedical records 8 91.6 (14.3) 886
  White blood cell count (103 · µl21) -- Aeromedical records 2 6.5 (1.7) 101
  Hemoglobin (g · dl21) -- Aeromedical records 2 15.3 (1.0) 101
 R ed blood cell distribution width (%) -- Aeromedical records 4 13.0 (0.6) 101
 I ntraocular pressure (mmHg) -- Aeromedical records 9 15.2 (2.4) 213
  Hearing level at 3000 Hz (dB HL) -- Aeromedical records 4 16.6 (9.6) 268
 SCORE  6-mo risk (%) -- Aeromedical records 3 0.07 (0.07) 102
 P hysiological dysregulation§ -- Aeromedical records ¶ 1.4 (0.9) --
Experience during simulator training session
 S elf-rated health 1/1–5 Pilot self-report (questionnaire) 0 3.6 (0.9) --
  Task load during flight 5/0–100 Pilot self-report (questionnaire) 0 49.0 (16.0) --
 S imulator sickness 1/0–100 Pilot self-report (questionnaire) 0 14.4 (22.6) --

Continued
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VARIABLE CATEGORY  
AND VARIABLE

# OF ITEMS/SCALE  
RANGE SOURCE # MISSING

MEAN (SD)/ 
N (%)

ASSESSMENT-SIMULATOR  
LAG*

General pilot characteristics
  Age (yr) -- -- 0 51.7 (8.2) --
  # of real flight hours -- Pilot self-report (questionnaire) 0 5340 (3513) --
  # of simulator flight hours -- Pilot self-report (questionnaire) 1 187 (411) --
 R isk seeking 4/1–5 Pilot self-report (questionnaire) 0 1.4 (0.4) --
Other
  Full flight simulator?** -- -- 0 23 (0.45) --

* Median time from risk marker variable assessment to simulator session in days. †Number of body regions (e.g., neck, lower back; 13 overall) where subject reported “occasional” or 
“frequent” pain. ‡As assessed at last available aeromedical examination (except physiological dysregulation). §Index derived from 18 health-risk associated biomarkers (see Auxiliary 
Appendix A). ¶Individual index component variables had been imputed before computation of index. Overall number of component variable missing values: 139 (5 15.1% of 18*51 data 
points). **No 5 flight training device.

an “external” validation set for the prediction quality of this 
particular tree. Prediction errors for the out-of-bag cases can 
again be averaged across all trees to yield a measure of predic-
tion accuracy which is less affected by overfitting. Furthermore, 
and particularly important in the present context, Random For-
ests are also able to produce a measure of relative importance in 
the prediction of the outcome for each individual predictor 
variable even when the number of predictors is larger than the 
sample size (which is not possible with conventional regression 
modeling techniques). In this way, relevant predictors can be 
identified. The importance of a predictor is calculated as the dif-
ference in out-of-bag prediction accuracy between a Random 
Forest grown on the original input data and that of another 
forest which is identical in parameterization and input data 
except that the values of the predictor have been randomly 
permuted, reducing its predictive capacity to chance level.23 
We used a modification of this variable importance measure 
(termed “conditional permutation importance”) which accounts 
for intercorrelations among predictors (analogous to the mutual 
adjustment of covariate effects in a multiple regression).22

For each of the 20 imputed datasets, we fitted 100 Random 
Forests and calculated the mean variable importance across the 
resultant 2000 Forests for each predictor variable to obtain an 
estimate which is less affected by the random variation inherent 
in the Random Forest procedure. We then selected those vari-
ables for further inspection whose mean variable importance 
exceeded the absolute value of the minimum mean variable 
importance among all variables. This selection criterion was sug-
gested as an improvement over the z-score metric commonly 
used for Random Forest variable selection.23 Note that conven-
tionally reported statistics such as P-values or confidence inter-
vals are not directly applicable to Random Forests, although the 
described selection criterion can be considered an analog to a 
P-value-based statistical significance threshold such as P , 0.05.

We also examined the stability of the importance assigned 
to a variable by inspecting how strongly the variable’s position 
in the importance ranking varied between the 2000 Random 
Forest fits. To visualize the relationship between the selected 
predictors and the outcome, we present partial dependence 
plots10 which display the effect of a predictor across its value 
range averaged over all other predictor value combinations 
occurring in the sample (i.e., the estimated marginal effect of 

the predictor). All statistical analyses reported subsequently 
were done using the R statistical software, version 3.3.1.

RESULTS

Fig. 1 shows the study subject flow. Unavailability of simulator 
data was mostly due to a mismatch of pilots’ training session 
schedules with the data collection period, whereas nonresponse 
by physicians/centers from whom examination records had 
been requested was the main reason for unavailability of aero-
medical data. The analysis sample consisted of 51 male pilots 
with all data types available, 15 (29%) from the Western Euro-
pean countries (Germany, Austria) and 36 (71%) from the East-
ern European countries (Poland, Czech Republic); see Table I 
for descriptives. Simulator performance scores were concen-
trated at the upper end of the scale and slightly left-skewed 
(range: 7–14, median: 12, skewness: 20.39). For some of the 
medical predictors, there was a considerable time lag between 
their assessment and the simulator training session.

Mean variable importances of the 54 predictor variables 
ranged from 20.0196 to 0.0691. Five variables had a higher 
mean importance score than the selection threshold of 0.0196 
(see Statistical Analysis above): the reward subscale of the 

Fig. 1. S tudy subject flow from recruitment to analysis stage.

Table I, Continued.
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Effort-Reward-Imbalance inventory18 measuring perceived 
rewards at work, the predictability of work demands score,26 
the physiological dysregulation score, simulator type, and the 
last available measurement of alanine amino-transferase, a 
marker of liver pathology (Table II; see Appendix C online, 
https://doi.org/10.3357/AMHP.5086sd.2018, for details on all 
predictors). There is a notable drop in mean variable impor-
tance from the selected to the unselected variables. Perceived 
rewards clearly stands out as having the highest predictive 
power, followed by perceived predictability and dysregulation 
and, after another distinct drop in variable importance, by sim-
ulator type and alanine aminotransferase. The importance 
rankings were fairly stable across Random Forest fits for the 
reward, predictability, and physiological dysregulation vari-
ables. Rankings were more unstable for simulator type and in 
particular for alanine aminotransferase.

The estimated marginal effects of the selected variables are 
illustrated in Fig. 2. Even in those variables which have the 
strongest association to simulator performance in the sample, 
the effects on performance are all quite small and on the order 
of 0.1 to 0.2 performance score points (where one performance 
score point roughly corresponds to one mistake in the simula-
tor scenarios). In other words, simulator performance is, on the 
whole, poorly predicted by the set of 54 variables considered. 
Still, the direction of effects is generally plausible in the selected 
variables: performance was better in those who perceived their 
work as more rewarding and work demands as more predict-
able, and worse in those with higher physiological dysregula-
tion scores and alanine aminotransferase levels. Several possible 
explanations come to mind (e.g., differences in simulator han-
dling characteristics, in the transmission oil malfunction sce-
nario, or in the response tendencies of the involved instructors) 
regarding the effect of simulator type. However, since this vari-
able was included for technical reasons (i.e., adjustment for 
simulator idiosyncrasies) rather than theoretical reasons, we 
will not discuss it any further.

The predicted effects in the quantitative variables were not 
linear but rather stepwise. Note that for the working condi-
tions variables, the threshold values (;12 for the Reward Sub-
scale and ;3 for the Predictability scale) correspond to the 

theoretical scale means; that is, performance was predicted to 
be better in those who, on the whole, agreed to statements such 
as “I receive the respect I deserve from my superiors,” and/or 
indicated that all in all, daily job demands could be predicted to 
a large extent. The threshold effect in the physiological dysregu-
lation score can be interpreted such that pilots who are in an 
excellent overall state of health according to the biomarkers 
used for the dysregulation score (i.e., all biomarker levels are 
well within the healthy range) are predicted to perform better 
than those who tend to have levels near or beyond the limits 
of the healthy range in at least one of the biomarkers. Although 
the alanine aminotransferase effect is harder to interpret, it is 
noteworthy that the threshold value after which performance 
decreases (;40 U · L21) falls into the upper end of male popula-
tion reference range limits (e.g., Piton et al.15).

DISCUSSION

In this cross-sectional explorative study, we applied the Ran-
dom Forest machine learning method for the selection of the 
most influential predictors of HEMS pilot performance in 
two simulated in-flight failure scenarios from a set of predic-
tors which covered personal and occupational human factors 
aspects potentially relevant to flight safety and which was larger 
than the sample size. Although the predictors on the whole 
explained rather little of the variation in simulator flight per-
formance, five of them (perceived rewards at work, perceived 
predictability of work demands, physiological dysregulation, 
alanine aminotransferase, and simulator type) explained more 
than would be expected by chance alone. Their effects appeared 
to be stepwise rather than linear and their direction was mostly 
consistent with theoretical expectations.

To the best of our knowledge, this is the first application of 
the Random Forest method to identify potential human factors 
safety issues. Many analyses use conventional bivariate or 
multiple regression methods.3,25 These “classical” methods have 
good statistical properties when their assumptions are met 
(which notably includes the rather restrictive assumption of 
linear effects) and are well-suited for confirmatory analyses 

Table II. S ummary of Variable Importance Characteristics of Variables Selected by Random Forest Procedure (in Italics) and of First Three Variables Below Selection 
Criterion.

MEAN VARIABLE IMPORTANCE

VARIABLE IMPORTANCE RANK ORDER*

M SD LOWEST HIGHEST

Reward subscale (ERI) 0.0691 1.42 0.72 6 1
Predictability of work demands scale 0.0501 2.55 1.17 16 1
Physiological dysregulation score 0.0495 2.61 1.18 14 1
Simulator type 0.0298 4.49 2.24 44 1
Last available ALT measurement 0.0224 6.40 5.19 54 1
Last available serum creatinine measurement 0.0113 9.66 6.03 47 2
Work hours per month 0.0099 10.66 6.79 48 2
Simulator sickness 0.0097 10.52 6.71 53 3

Statistics calculated across 2000 Random Forest fits (100 in each of 20 imputed datasets). Selection criterion: mean variable importance greater than absolute value of minimum mean 
variable importance (20.0196).
ERI: Effort-Reward-Imbalance Scale. ALT: alanine aminotransferase.
* Ranks (including mean ranks) coded such that lower values denote higher ranks (highest: 1st rank; lowest: 54th rank).
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Fig. 2. P artial dependence plots of flight simulator performance vs. predictors selected by Random Forest procedure (predictor value ranges as present in the 
sample). Black line/dots: Prediction averaged across 2000 Random Forest fits. Gray lines/dots: Prediction of randomly selected individual fits to illustrate variability 
across fits. Note that the y-axes display only a small fraction of the outcome variable’s theoretical range (0–14). ERI-Reward: Effort-Reward-Imbalance Reward Sub-
scale. FFS: Full flight simulator. FTD: Flight training device. ALT: Alanine aminotransferase.

investigating the effects of a smaller number of predictors of 
interest. In contrast, machine learning methods appear to be 
better suited for explorative analyses where vast amounts of 
information on potential predictors is available and little is 
known about the functional relationship between the predic-
tors and the outcome.

Analysis of natural-language documents are a prototypical 
example of a high-dimensional input problem; in aviation 
safety, machine learning methods are becoming increasingly 
popular for text mining of accident/incident report narratives. 
Often, unsupervised learning methods are applied to cluster 
occurrence reports and subsequently identify common under-
lying themes, such as cigarette smoking by passengers.24 While 
these approaches are very flexible and can accommodate data 
which is otherwise difficult to process, they are able to identify 
only those factors mentioned in the reports, which tend to be 
proximal factors.27 Furthermore, human factors hazards such 
as “confusion” are often hard to isolate for text mining algo-
rithms since their description mostly lacks highly distinctive 
signaling words which characterize the more technical issues.24 
Our analysis may be located somewhere in between the two 
extremes of linear modeling of selected features and indis-
criminate text mining, in that it allows a certain preselection of 
features, including those which are usually not considered in 
occurrence reports, such as organizational stressors, but does 
not impose restrictive assumptions on the relationship between 
predictors and outcome.

Of the five selected informative predictors, two measured 
aspects of psychosocial work stress. This kind of stress is known 
to affect safety at work.14 Young29 reviewed the effects of life 

stress (including work stress) on pilot performance and sug-
gested that life stress might undermine performance by increas-
ing fatigue (through reduced sleep quantity and quality as well 
as emotional exhaustion), decreasing motivation to perform 
(e.g., skipping “unimportant” tasks such as checklist procedures), 
worsening interpersonal relationships and communication with 
colleagues, and increasing intrusive and distractive worrying. 
With regards to the most predictive of our variables, perceived 
rewards at work,18 reduced motivation may be a plausible con-
tributing factor.11 On the other hand, the second selected work 
stressor26 assesses the degree to which the pilot perceives his 
work environment to be predictable. This may be related to 
instances of disrupted action regulation (“hindrance stressors”) 
during work; repeated experience of disrupted action regulation 
might lead to a more passive style of coping with work demands.12

The concept of physiological dysregulation as an overall loss 
of an organism’s capacity to maintain homeostasis has recently 
received increased interest in gerontology to explain differences 
in the “healthiness” of aging between individuals.2,13 Physiolog-
ical dysregulation was found to be associated with cognitive 
decline and reduced psychomotor performance already at age 
38,2 but analyses of the relation between dysregulation and 
work performance or safety are lacking so far. Especially in 
safety-critical jobs such as piloting, the use of physiological dys-
regulation indices appears to be an interesting concept for early 
detection of health-related risks at a subclinical stage.19 Given 
the existing framework of aeromedical examinations in pro-
fessional pilots, more systematic investigations of the effects of 
physiological dysregulation on flight performance might be 
implemented with comparatively little effort.
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The second selected medical predictor, alanine aminotrans-
ferase, is a marker related to liver cell necrosis used in the diag-
nosis of liver conditions, including alcoholic or nonalcoholic 
fatty liver disease. This result may evoke associations of a pos-
sible role of alcohol use,6 but clearly the exploratory nature of 
our findings, especially regarding this predictor, which was 
quite unstable across Random Forest fits in terms of predic-
tive power, prohibits any such speculations given the sensitive 
nature of the topic; however, for purposes of replication and 
confirmation, this marker might be included in future investi-
gations of the relation between pilot health and performance.

Among the limitations to this study, the most immediately 
apparent is the small sample size, which highlights a drawback 
of our approach compared to, for example, the use of occur-
rence reports: collecting a range of data sources, each with its 
own mechanisms of sample attrition, from an inherently small 
population (HEMS pilots) will almost inevitably lead to a small 
sample size. On the other hand, it should be kept in mind that 
our approach was motivated precisely by the question of 
whether it is possible to obtain interpretable results when the 
number of potential predictors is large relative to the sample 
size, a situation which is not uncommon in human factors avia-
tion safety studies that are not purely based on retrospective 
review of occurrence reports or administrative records.

Moreover, as is the case with explorative research in general, 
there is also a threat of false-positive findings due to many 
simultaneously assessed associations. It should be noted, how-
ever, that the directions of the selected variables’ effects appear 
to be generally plausible and that there is a relatively clear sepa-
ration between the selected variables and unselected variables 
in terms of the variable importance scores. The logic behind the 
chosen selection threshold also seems to imply some protec-
tion against capitalization on chance since the absolute value 
of the minimum observed variable importance score should 
be expected to increase with the number of noise predictor 
variables involved (whose variable importance should vary 
randomly around zero). Finally, in the light of the tradeoff 
between type I and type II errors in statistical decision-making, 
it has been suggested that there should be a focus on minimiz-
ing the latter error in aviation safety research due to the poten-
tially grave implications of false-negative findings.8

With regards to the aeromedical data, there was additionally 
the problem of a time lag between the last available assessment 
and the simulator session, which was very large (2–2.5 yr) in 
some of the biomarkers, including alanine aminotransferase, 
which had been selected as an informative predictor by the 
Random Forest procedure. According to linear mixed model 
analyses of time-stability of biomarker levels we conducted ear-
lier, between 44 and 95% of the total variation in biomarker 
levels across average follow-ups of 5.2 to 8.2 yr were due to dif-
ferences in pilot averages across time, indicating considerable 
stability of interindividual differences in the biomarkers (for 
alanine aminotransferase specifically, the respective figures 
were 70% and 5.2 yr). One might, therefore, assume that differ-
ences at the time of last available assessment carried over to the 
simulator session to some extent.

Finally, in contrast to occurrence report studies, our out-
come of simulator flight performance can be viewed only as a 
proxy to the actual outcome of interest. Thus, in order to achieve 
an optimal ecological validity, we consulted extensively with 
experienced HEMS pilots and flight instructors in the selec-
tion of malfunction scenarios as well as in devising the scoring 
procedure.

To conclude, we identified three well-interpretable predic-
tors of HEMS pilot simulator flight performance (two occupa-
tional stressors and an index of physiological dysregulation) 
from a broad array of candidates by exploiting the capability of 
the Random Forest machine learning method to select impor-
tant predictors even when their number is large relative to the 
sample size. The predictors were taken from different sources 
(self-report, medical examinations) and covered different aspects 
of potential relevance to the error chain as outlined in modern 
systemic human factors safety approaches. Although our study 
is explorative in nature, which precludes confident statements 
about concrete measures to improve safety in HEMS, the results 
do suggest that the effect of working conditions and their per-
ception by the pilots deserve further scrutiny. For example, the 
role of work stressors on HEMS pilots’ subjective well-being 
might be investigated; well-being and mental health of profes-
sional pilots have received considerable attention recently,1 
but data for HEMS pilots are lacking. The physiological dys-
regulation construct is an intriguing potential tool for early 
recognition of latent pathology in professional pilots. While our 
dysregulation index was of a somewhat ad-hoc nature con-
strained by data availability, the utility of current measures of 
dysregulation derived from theoretical considerations2,13 for 
screening, prevention, and selection purposes in aeromedical 
examinations might be further investigated. Finally, our study 
showcases the potential of the Random Forest method in the 
field of aviation human factors. For example, it could be applied 
to appropriately quantified information from accident investi-
gation databases to identify factors associated with accident 
lethality. However, abundant data are also collected in everyday 
aviation operations and, with some effort invested into database 
normalization, information about the effect of operative condi-
tions (e.g., timing of missions, weather, geographical location) 
on mission safety parameters may be quantitatively analyzed 
by individual HEMS operators using Random Forests. In a 
more ambitious approach, a framework for a common har-
monized database which might include organizational, opera-
tional, administrative, and even aeromedical information 
could be established between operators or also between dif-
ferent aviation sectors. With such a large-scale database, the 
full potential of machine learning methods, which are designed 
to handle large amounts of information, could be brought to 
bear. Careful consideration would need to be given to feasibil-
ity (e.g., due to data comparability, data protection, and confi-
dentiality issues) with this approach. In any case, the presented 
use of the Random Forest method may be a fruitful addition 
to existing risk analysis tools, helping operators to think “out-
side the box” in their efforts to identify additional flight safety 
measures.
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